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Abstract

Innovative sources of high-resolution mobility data are enabling new approaches to
modeling and measurement of human behavior. With the advent of global positioning
data in fisheries, now more than ever we can empirically model fishers’ decision-making.
In the short-run, after choosing the fishing gear, fishers decide where to fish, how much
to fish and when to return to the port on a given trip. Most of the research investigat-
ing these decisions has focused on one aspect of the decision at a time (e.g., choosing a
fishing location), treating other aspects exogenous. These decisions, however, are intercon-
nected and conditional on the underlying vessel capital stock (e.g., hold and fuel capacity).
This research constructs a novel spatial dynamic model of an individual fisher’s trip level
decision-making that incorporates simultaneous decisions on location choice, fishing effort
to allocate at each location, and travel route. It is motivated by the observations on fishing
trips from the Gulf of Mexico’s bottom longline fishery. We demonstrate the model using
numerical simulations. Simulation results show that technology constraints endogenously
determine the trip length. These constraints also impose a shadow price that affects the
individual fisher’s choice of location and effort from the outset of a trip. We compare these
optimal spatial patterns with those from a myopic fisher and a partially myopic fisher,
where the former makes one choice ahead decisions and for the latter we consider different
levels of forward-looking choices (2, 3, and 6 decisions ahead). The myopic fisher does not
optimize route planning or consider the technological constraints until it is time to return
to port. Both factors result in large reductions in trip profit even though, for example,
catches can be the same across the myopic and dynamic fisher. For the partially myopic
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fisher, the degree of route planning and consideration of technological constraints depends
on the level of forward-looking. Not surprisingly, the more forward looking the partially
myopic the closer it approaches the dynamic optimal. Building more refined models of
trip level spatial decision-making is important for the design and assessment of spatial
and aspatial fishery management instruments.

1 Introduction

The existence of high frequency space-time data on human activities and movements is per-
mitting the exploration and prediction of behavior in unprecedented ways. Cellphone data

has been used to understand the differential abilities of income groups to respond to COVID-

19 emergency declarations (Weill et al., 2020), to better predict traffic patterns (Wang et al.

2013), and to understand global mobility patterns (Kraemer et al., 2020)). Economists are

employing these data to measure/predict poverty and wealth (Blumenstock et al. [2015;

Steele et al., |2017), measure consumer preferences (Athey et al |2018), spatial concentration

of urban economic activity and value of transportation infrastructure (Gupta et al., [2020;

Miyauchi et al., [2021; Kreindler and Miyauchi, [2021), social networks and social connections

(Bjorkegren, [2019; Athey et al., [2020; Biichel et al.l |2020; |Couture et al., 2021)

Satellite tracking data of vessels that report GPS coordinates throughout their voyage have

been used to map patterns of fishing effort across the globe (Kroodsma et al., 2018), assess

the effectiveness of the 200-nautical mile exclusive economic zone in limiting foreign vessels

intruding into a coastal nations waters (Englander] [2019), investigate the explore-exploit

tradeoff (OFarrell et all) 2019b), identify behavioral typologies of fishing vessels (OFarrell

2019a) and the behavioral changes post the introduction of catch shares (Watson et al.
2018).

These data are also permitting researchers to revisit methodologies developed to explore




space-time behavior to better understand their potential strengths and weaknesses. For ex-

ample, Dépalle et al.| (2021)) use vessel monitoring system (VMS) data matched with logbook

data on catches and effort to demonstrate potential biases in discrete choice random utility
models of fishing location choices due to spatial aggregation. Figure 1 contrasts the traditional
data used in modeling fishing choices (Figure with the vessel level tracking data that is
available (Figure [Lb|and . While the historical data had trip-level data on whether a vessel
visited a site and catch, the VMS data includes finer spatial information on the vessel’s path,

site choice, and time spent in each location.

Resolution: 60NM (NMFS post13)
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Figure 1: Data of longline fishing in the Gulf of Mexico. Figure shows the 60NM-long
statistical areas used by the U.S. National Marine Fisheries Service (NMFS) after 2013 for
trip-level logbook reporting(Dépalle et al. [2021)). Figure [1b]is heatmap of fishing activity by
longline vessels using the hourly Vessel Monitoring System (VMS) positions. Figure |1c|is a
simulated vessel track with VMS pings classified into fishing (red circles), transiting (black
dots) or in port (black diamonds) using a supervised learning algorithm trained by onboard
observer data. Figure [Ibland [1b| comes from OFarrell et al. (2019b).

Motivated by the existence of this data, we develop a more refined trip level model of

spatial-temporal decision-making of vessels to inform the design of spatial and aspatial man-

agement measures (Bockstael and Opaluch, |1983). On any trip, skippers decide where to fish,

how to navigate to the sites, how much to fish, and when to return to the port conditional
on vessel capital, labor, target species, and gear. The decisions are influenced by economic

opportunities, technology (e.g., vessel hold and fuel capacity), and regulations (e.g., closed



areas and seasons, gear restrictions).

On each trip, the short-run decision of location choice for commercial fishers is a dy-
namic spatial problem. Spatial patchiness of marine resources with different population levels
and economic characteristics generates discontinuities in the spatial structure (Sanchirico and
Wilen, [1999). Spatial decisions are therefore modelled as discrete choices among a finite set
of fishing sites in commercial fisheries. Since the original Bockstael and Opaluch (1983)) work,
most of the empirical studies use a static random utility model (RUM) to investigate trip-level
location choice under stock-induced uncertainty (see, e.g., [Eales and Wilen (1986)); Abbott
and Wilen (2011)). For fisheries consisting of multiple day trips (e.g., tuna, groundfish),
researches have incorporated dynamic behavior into the static RUM with state dependence,
evolving information, and changing choice sets. While these advances capture some aspects of
the decision-making calculus, they are still simplifications of the full dynamic choice problem.
Mostly, as a means to maintain computational tractability, they fail to incorporate the in-
terconnections between location choice, trip duration, and vessel characteristics. The studies
that are more dynamic in fishers decision-making for multi-day tripﬂ however, often assume
an exogenous trip length for identification purpose (see, e.g., Hicks and Schnier| (2006} |2008);
Hutniczak and Minch| (2018])). A notable exception is a recent paper by |Abe and Anderson
(2022) that models endogenous trip length resulting from freshness loss in a dynamic discrete
choice model. However, the study does not include trip-level location choice analysis.

This research constructs a dynamic spatial model of an individual fisher’s location choice
(extensive margin), cruise trajectory, and effort allocation at each site (intensive margin)

within a trip. The Gulf of Mexico’s reef-fish bottom longline fishery provides the motivation

nstead of maximizing current period utility in the static RUM, these studies consider the optimal trajectory
of forward-looking fishing decisions and maximize the sum of expected utility from the multi-period cruise.



and application of the method for numerical analysis. A key feature of the model is the
explicit incorporation of route planning and trip-level production constraints on vessel hold
capacity and/or fuel consumption. The binding technology constraints introduce a shadow
priceﬂ into the decision-making of where to fish, how much to fish, and when to return to port.
Route planning consists of finding the shortest path connecting the chosen locations. Both
the shadow price and route planning are missing in the previous discrete choice modeling of
fisher trip decisions. We illustrate the utility of modeling the spatial-dynamic decisions of
fishers under binding technology constraints and route planning using numerical simulations.

At the same time that high frequency data are becoming available, advances in com-
putational abilities and algorithms in operations research enable us to solve this complex
spatial-dynamic problem. The fishing trip decision-making is very similar to the orienteering
problem (OP), which is a routing problem with profits in the operation research literature
(Gunawan et al., |2016; [Vansteenwegen and Gunawan, [2019). Solving the OP corresponds
to solving two well-known combinatorial optimization problems in an integrated way: the
knapsack problem (KP) and the traveling salesman problem (TSP). The individual fisher’s
location choice problem modifies the OP to account for the effort allocated at each location
and is formulated as a mixed integer quadratically constrained problem (MIQCP). It is solved
by the off-the-shelf solver Gurobi using a branch-and-bound algorithm.

To understand how optimal spatial effort allocation decisions differ from the approaches
often utilized in the literature, we also develop a myopic model where the individual fisher
chooses a location at each decision point within a trip and the effort to allocate at each site.

This stands in contrast to the dynamic optimal fisher that chooses a sequence of locations.

2The shadow price could be on fuel capacity or hold capacity depending on which constraint is binding.



The myopic model mimics the assumption in the discrete choice literature on fishing location
decisions. We also consider cases of a partially myopic fisher that considers multiple forward
decisions but is not optimizing the entire trip (e.g., 2 decisions ahead, 3 decisions, and 6
decisions).

Previous empirical studies find evidence that fishers are more likely to choose locations
with high expected rewards, low travel distance and low risk. Our simulation results are
consistent with the previous literature. Sites with high fish stock and low travel distance are
visited. Simulation results also show that technology constraints such as fuel constraint and
hold capacity constraint endogenously determine the trip length. The fuel constraint and the
hold capacity constraint limit the number of fishing sites to go and the amount of fishing effort
applied by constraining the total fuel usage and/or the total fish harvest. These technology
constraints impose shadow prices that affect the decision of fishing effort and location choice
from the outset of a trip. Comparing the results from the optimal trip decision-making with
the myopic, we demonstrate how the prior research is subject to misspecification, as researchers
have ignored the role of vessel capacity, fuel constraints and route planning in their estimations
of fishers’ location choice. We decompose the profit loss from ignoring route planning and
technology constraint by modeling a partially myopic fisher who considers multiple choices at
a time. The more sites the partially myopic fisher considers in the trip decision making, the
higher the profit realized from better route planning and distribution of fishing effort.

The paper is organized as follows. Section 2 reviews the literature in the short run location
choice in commercial fishery. Section 3 presents the model of the short run decision on location
choice and effort allocation by the dynamic fisher, the myopic fisher, and the partially myopic

fisher. Section 4 describes the Gulf of Mexico demersal longline fishery and parameterization.



Section 5 presents the simulation results. Section 6 concludes.

2 Literature Review

The short-run decision of location choice for commercial fishers at the trip level is a dynamic
spatial problem. The individual fisher’s problem is cast as choosing fishing sites to maximize

the overall trip profits. Spatial patchiness of marine resources with different population levels

and economic characteristics generate discontinuities in the spatial structure(Sanchirico and|

, 1999). Spatial decisions are therefore modelled as discrete choices among a finite set
of fishing sites in commercial fisheries.

The discrete choice random utility model (noted as RUM) was first used in Bockstael and

paluc to model the medium-run decision®|of fishery choice in New England trawling
Opaluch (1983) del th di decisi f fish hoice in New England li

fishery. Since then, the RUM has been utilized to model the short-run margin of the fishery

production process, trip-level location choice in single and multispecies fisheries (Eales and,

Wilenl, [1986; Dupontl, [1993; Mistiaen and Strand, 2000} [Smith, 2005} [Abbott and Wilen), 2011}

Sun et al., 2016)), and trip-level fishery and location-choice in multi-species fisheries (Holland

and Sutinen, 2000; |Curtis and Hicks, 2000; (Curtis and McConnell, 2004). Eales and Wilen]

(1986) and Sun et al. (2016) modeled the location choice of the first set, which is a very

short-run decision.
The static RUM is usually formed as the following: fishers, conditional on taking a fishing

trip, make a decision of where to fish to maximize the current period utility in time period ¢

31n the fishing production, medium run decisions include between fishing trip decisions such as switching
ports, switching target species, and switching gear.



that is affected by travel costs and expected rewards linearly.

Uijt = Baist % Distije + Brewards X E[Rewards;ji] + ;¢ (1)

where ¢ represents the vessel, j is the site and ¢ is the decision point (usually in temporal
dimension). €;j is the random shock. Dist;j; denotes the distance to a given location. These
studies show that fishers tend to visit a site with a high expected revenue and a short travel

distance. Extensions of the static RUM include variables such as variance of the rewards

(Dupont), [1993; Mistiaen and Strand, 2000} Hutniczak and Miinch| 2018]), preference hetero-

geneity (Smith, 2005), state dependence (your past experience affects future choice) (Hol

land and Sutinen, |2000; |Smith| 2005), evolving information and information sharing (Curtis

and McConnell, 2004; |Abbott and Wilen|, 2011; [Dépalle et al., [2021]), spatial correlation and

learning (Marcoul and Weninger), 2008; Hutniczak and Miinch), [2018)), and bycatch avoidance

(Haynie et al |2009; Abbott and Wilen, 2011]).

Applied studies of location choice spanned a diverse range of fisheries from sedentary

species (Smith, 2002, |2005; Marcoul and Weninger, 2008)) to pelagic species (Curtis and Hicks,

2000; Mistiaen and Strand}, 2000; (Curtis and McConnell, 2004)). For sedentary species, most

vessels fish single-day trips choosing 1-2 fishing grounds (Eales and Wilen) [1986; [Smithl [2005}

Marcoul and Weninger, 2008). For finfish species like groundfishes or tunas, vessels make

multi-day trips (Curtis and Hicks| 2000; |Curtis and McConnell, 2004; Hicks and Schnier),

2008; |Abbott and Wilen| 2011} Hutniczak and Miinch, [2018). This adds a layer of dynamic

complexity to the problem. On a multiday cruise, spatial location choices may be made in a

dynamic context instead of myopic day-to-day strategies. A set of papers incorporate skipper’s



forward-looking behavior in the RUM by adding expected future payoffs to the objective

function (Curtis and Hicks, [2000; |Curtis and McConnell, 2004; [Hicks et al., 2004; |Hicks and|

2008)). The dynamic random utility model (DRUM), a static RUM entrenched in

dynamic optimization developed and used in Hicks and Schnier| (2006 2008), is a middle

ground approac}ﬂ to include dynamic choices and remain computationally tractable.

Even in the pseudo-dynamic models, trip length for multi-day trips is usually assumed

exogenous. For example, |Curtis and Hicks| (2000)); |Curtis and McConnell (2004)); Hicks and|

'Schnier] (2006, |2008)); [Hutniczak and Minch (2018) assume the length of the trip is known

before leaving port. Trip duration, as an input of the short-run fishery production process, is

endogenously determined during a trip. (Curtis and Hicks, 2000)) and (Curtis and McConnell,

2004) suggest that catch deterioration affects location choice through the impact on produc-

tion horizon. A recent paper by |Abe and Anderson (2022) models the dynamic choices of

endogenous trip length due to freshness deterioration. However, the paper doesn’t include
the spatial margin of the trip level production process.

Fuel and hold capacity are mainly discussed in the literature of capacity measures and
capacity utilizatiorﬂ Little attention has been paid to the role of fuel capacity and hold

capacity in location and trip duration choice. One reason could be that few trips land a full

load (Smith and Hannal 1990; Abe and Anderson, 2022) or appear to use up all the fuel

on a given trip. Although the ex-post constraints may not be binding, these constraints are

41t is a middle-ground approach as stated in (Hicks and Schnier| [2006) because the state space is determin-
istic, rather than stochastic and path dependent, to avoid the curse of dimentionality. The individual fisher
formulates the expectation about the site conditions at the port and uses the deterministic information to
calculate the value function for future periods. There is no information processing and expectation updating
by vessels during the cruise.

SFishing capacity measures the capability of a vessel or fleet of vessels to catch fish (Smith and Hanna) 1990}
. Fuel consumption is an input measure to represent the effective effort applied to existing
capital stock, usually not captured in the capacity analysis (Kirkley et all 2002 |Dupont et al.,[2002} [Felthoven|
land Morrison Paul, [2004). Hold capacity is the most widely used output-based physical measure of fishing

capacity (Gréboval, .




likely to impact the ex-ante decision-making given that there is a risk violating them on any
given triplﬂ Running out of fuel at sea also could have devastating consequences for the vessel
capital and crew.

Up to now, the literature on trip-level location choice addresses portions of the full dy-
namic spatial problem faced by commercial fishers on a trip most likely due to model and
computation complexity. As far as we are aware, no paper in the fishery economics literature
on location choice captures the interlinked decision on location choice, fishing effort, travel

route, and trip length with the technology constraints of fuel and hold capacityﬂ

3 Methodology

To address the gap in the literature, we develop a structural model for the dynamic within-trip
decision process of location choice, effort allocation and the path in a multi-day trip, while
the trip duration is endogenously determined by fuel or hold capacity constraints. Although
uncertainty is a key part of the problem, the paper starts with a deterministic fish stock setting
to disentangle the complex spatial dynamic problem. In ongoing work, we are incorporating
uncertainty and passive learning over trip on the stock levels in each site.

The spatial dynamic fishing production problem of an individual vessel can be modeled as
a single vehicle routing problem with profits (VRPP) or a traveling salesman problem with
profits (TSPs with profits) in the operation research literature. In the routing problem with

profits, all nodes of interest have a certain profit and not all of them need to be visited, but

6An analogy could be range anxiety which is a well-known phenomena with the use of electrical vehicles
(EV) (Li et al.l [2017). EV owners worry about running out of electricity before reaching the destination given
the limited driving range, even though many do not run out of a charge on any given trip.

"Haynie and Layton (2010)) jointly estimated the expected catch value and location choice. However, the
continuous catch is treated as a random variable instead of a choice variable after the location is chosen. There
is no assumption about the fishers effort allocation rule.

10



a selection has to be made. According to the way the two payoffs, profits and travel costs
(mostly distance or time), are addressed, the single vehicle routing problem with profits could
be categorized into three types of problems. In the profitable tour problem (PTP) (Dell’Amico
et al., |1995)), the objective function is to visit a subset of customers that maximizes the total
collected profit minus travel cost. In the prize-collecting traveling salesman problem (PCTSP)
(Balas, [1989)), the objective is to minimize the total travel cost to collect a minimum amount
of profit by visiting a subset of the customers. In the orienteering problem (OP) (Tsiligirides,
1984} |Golden et al.l [1987), the objective is to find a route that maximizes the total collected
profit from the subset of nodes while not exceeding a given travel cost constraint (typically a
time constraint).

The OP setting fits the spatial dynamic fishing production problem of an individual vessel
the best. Because the individual vessel tries to maximize the total collected fishing profit from
a subset of fishing locations and avoid violating two travel cost constraints: the hold capacity
constraint and fuel capacity constraint. The OP actually integrates the difficulties of two
complex combinatorial optimization problems: the knapsack problem (KP)E| and the regular
traveling salesman problem (TSP)E[/the vehicle routing problem (VRP)E (Vansteenwegen and
Gunawan, 2019).

The OP can be formulated as an integer programming model with the following binary
decision variables: y; =1 if node 7 is visited, and x;; = 1 if a visit to node i is followed by a visit

to node j. We modify the OP for individual fisher’s location choice problem by introducing a

81n the KP, each item has a profit and requires some volume. The goal is to determine the combination of
items that maximizes the total profit and that fits in a given volume. In the fishing production context, fish
catch requires storage space.

9The objective of the T'SP is to find the shortest single route visitng all customers.

0 he objective of the VRP with a single vehicle is to minimize the total distance required to visit a fixed
set of customers starting from a depot.

11



continuous decision variable, fishing effort, and rewriting the profit at each node as a function
of fishing effort using a generalized Schaefer harvest function (Zhang and Smith, 2011)). With
the binary and continuous decision variables, this discrete-continuous problem is formulated
as a mixed integer programming (MIP) problem. In the formulation of the routing problem,

time is implicit and endogenous to the explicit spatial choice.

profit; = p x harvest; — cost(harvest;)

= px qEffort]Stock? — cost(Effort)

3.1 Model for the location choice problem
3.1.1 Assumptions

The model features a vessel with a finite amount of fishing sites and a single port. The vessel
starts and ends at the port (Node 1) in a fishing trip. Each fishing site i € N is associated
with a non-negative fish stock, Stock;. Fish stock is 0 at the port. In the deterministic case,
the fisher has perfect information about the fish stock at each fishing site.

Since the distance from fishing site 7 to j is assumed to equal the distance from fishing
J to i (dij = dj;), we can model the problem as an undirected graph G = (N, E), consisting
of the set N of nodes and the set E of edges. In the undirected graph G, all the edges (i, )

are bidirectional, z;; = ;. A brief explanation of the terms used in operation research is in

Table [l
Table 1: Terms used in fishery operation research
Node A fishing site or a port. Nodes in the problem are numbered 1 to NV
Edge A connection between any two nodes representing movement

Tour A fishing trip. It involves departure from a port, a sequence of fishing site visits and the return to the port.

12



The vessel is assumed to maximize profit. The profits from fishing at each site are aggre-

gated into a trip-level return and each site can be visited at most once.

3.1.2 Formulation

The goal of the individual vessel is to find a route that visits a subset of N fishing sites and
to choose the fishing effort at each site to maximize the total profit subject to technology
constraints imposed by fuel and hold capacity constraints. The problem of the individual

vessel is

max e n(pigA] Stockiyi — afcruaAi) = X jer dijibf e ue

Tij,YirAi
st Y jepdijTigbf + X ien Aiaf < Fraa Fuel constraint
en 4A] Stockiy; < Crnae Hold capacity constraint
i€EN 7 Y y
Zévzg T = 2y Entering and Leaving 1

Zi]i_llxik = 2y, wipp=xp ifi>kitk k=2, 7|N| Entering and Leaving k

n= 1 Visit Node 1

IN

>ies 2 jes Tij Yies\(k} ¥ VS C N\{1},|S| > 3,ke S Subtour elimination

zij i € {0,1}

(3)
Table [2| summarizes the model variables and parameters that will appear repeatedly in

the paper. Each constraint in isexplained in turn below.

Objective function The vessel chooses the fishing site y;, path x;; and fishing effort A; at

each fishing site to maximize the total trip profit. Fishing profit equals to harvest revenue

11Edge T;1 = Xk; in the undirected graph.
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Table 2: Variable and parameter definitions

Decision Variables Label Range
Tij = 1 if the edge ij is visited, 0 otherwise. x;; = x;; in the undirected case. (0,1)
Yi =1 if the node i is visited, 0 otherwise (0,1)
A; fishing effort (hook number x fishing hour) at node 4 continuous
Parameters description Value
N the set of nodes in the network (the port and fishing sites) 15
E the set of edges in the network

S the set of subtours

k an index representing the node

d;j travel distance in nm between node ¢ and j. d;; = dj; in the undirected case

Stock; fish stock at node i

i price of harvest at node 4 300
q catchability coefficient 9.4 x 1061
f fuel usage, gallon per hour 5
Cfuel $ per gallon, unit cost of fuel usage 2

a fishing effort fuel consumption coefficient 0.002
speed traveling speed, knots (nautical mile per hour) 5

b traveling fuel consumption coefficient, 1/speed, 0.2
Frrae fuel capacity

Craz hold capacity

vy output elasticity of fishing effort 0.7
I3 output elasticity of fish stock 1

e {: See derivation in Appendix Section E

minus fishing cost and traveling cost.

(4)

max
Tij,YirAs

Pl"oﬁt = ZieN (piharvestiyi — afouelAz-) — Z(i,j)eE‘ dz’jxij bfcfuel

The price per node is allowed to be different across fishing sites and we assume that the

harvest function is a Cobb-Douglas production function.

harvest; = qStockf Al

(5)

where ¢ is catchability coefficient, defined as the fraction of the population fished by an
effort unit (Gulland, [1983)). The Schaefer harvest function is a special case when y=1,8=1

(Schaefer| 1954)) .

14



Constraints The individual fisher faces the following constraints.
Fuel constraint limits the total fuel usage of fishing (3 ,;c Asaf) and traveling between

sites (Z(i,j)e pdijziibf) given the fuel capacity of the vessel Fiqq:

> digzgbf+ > Aiaf < Fraa. (6)

(ig)eE ieN

The total trip harvest must be less than or eqaul to the available hold capacity Cyqz:

iEN

The set of port constraints ensure the vessel starts from and ends at the port (Node 1).

N
Z:L’lk = 2y1. (8)
k=2

I
—

(7 9)

The connectivity constraint ensures connectivity at node k in terms of entering and exiting
the location. The vessel arrives at Node k via edge (i,k) and leaves Node k via edge (k,j).

Edge z; = xj;, because edges are bidirectional.

N-1
D wip =2y, wip = wpi i i > ki £k k=2, |N|. (10)
=1

Suppose N = 3, we can rewrite the connectivity constraint as the following. If the vessel
visits Node 3 (y3 = 1), then the travel path is either 1-3-2 (z13 = 32 = 1) or 2-3-1 (ze3 =

x31 = 1). Because the edge is bidirectional, edge x13 = w31, 12 = x21. Then the equation

15



12 + 13 = 2y describes the two possible paths that the individual vessel visits Node 3.

T2+ x13 = 2y1
T12+x23 = 2y (11)

13+ T3 = 23

Subtour elimination constraints eliminate possible subtour§'?} For every subset of nodes
(port excluded), the number of visited edges inside the subset (z;;-values equal to 1) should
be strictly smaller than the number of nodes in the subset. |Dantzig et al. (1954) proposed
the following subtour elimination constraints for the travelling salesman problem (Equation
. It is the strongest known linear relaxation for the travelling salesman problem but the
exponential number of constraints makes the implementation impractical (Palomo-Martinez

et al. 2017). The set of subtours is |S| = ";cq¥i-

Yijestii < [S|-1;¥S C N\{1},5 # @. (12)

Since not all nodes are visited in the solution of the orienteering problem, [Feillet et al.
(2005) defined a stronger formulatioﬁ (see Equation (Palomo-Martinez et al., |2017)).

The bidirection setting of x;; naturally deleted subtours with only two nodeﬁ .

YijesiziTii < Dies\ky ¥is VS C N\{1},|S] >3,k € S. (13)

2gybtours: The optimal solution found doesn’t give one continuous path through all the points, but instead
has several disconnected loops (subtours). Appendix Section [Bf includes an example of TSP solution with
subtours.

3 The formulation is stronger for the orienteering problem where only a subset of nodes is visited. In the
traveling salesmen problem, the formulation is different because all nodes are visited.

14 A subtour of two nodes 4 and Jj requires both x;; =1 and x;; = 1. But the bidirectional edge z;; =1
represents either the edge from i to j is taken or the edge of j to i is taken but not both. Therefore there are
no subtours of two nodes with the bidirectional edge x;;.

16



The edge choice variable z;; and node choice variable y; are both binary variables: xz;; €

(0,1) and y; € (0,1). Fishing effort (fishing hour x hook number), A;, is continuous.

Solution We solve for an open-loop solution that does not account for the strategic inter-
action between players through the evolution of state variables over time and the associated
control adjustments (aka feedback rule). The player chooses the plan for the whole trip at

the beginning and commits to it (Cellini and Lambertini, 2004)).

3.2 1-site Ahead Myopic Fisher

3.2.1 Assumptions and Setup

Period-by-period static random utility model for location decisions depicts a myopic fisher.
Using the similar formulation of the dynamic fisher, the individual fisher does a rolling max-
imization by choosing only one site at each decision point.

Because time is implicit and endogenous to spatial location in this framework, the decision
point is in the spatial dimension. At the initial decision point one, the fisher is at the port
(Node 1) and chooses to go to site k. Then the fisher is at site k, the decision point two where
the second site is chosen. The time between two decision points (chosen locations) equals
to the fishing time at the previous decision point (location) plus travelling time from the
previous decision point (location) to the current decision point (location). It is endogenously
determined by the location choice and effort allocation. The temporal dimension can be
constructed using the model solution of location choice, effort allocation and path.

If the available storage is used up, the fisher has to return to the port. Moreover, if the

fuel cannot support the trip from the current site to any next site and then back to the port,

17



the fisher will return to the port immediatelyﬁ Otherwise, the vessel will be adrift at sea
after fishing at the next site due to insufficient fuel.

In this setting, we modify the fuel constraint as Equation [14]since the fisher considers the
distance between the next site and the port in addition to the distance between current site
and the next site. The bidirectional edge x;; used in the dynamic fisher’s problem (Equation
doesn’t capture the difference between travel distance back to the port of edge (i,j) and
that of edge (j,7). The distance from site i to site j to the port (Node 1) is not equal to the
distance from site j to site ¢ to the port because the distance from the site to port depends
on the current site (d;; +dj1 # dj; +d;1 because d;1 # dj given i # j).

The myopic 1-step ahead fisher problem is a directed graph with directional edges.

> (dij+dia)wibf+ > adif < Fla, (14)
(i,j)€E (i)eN

15Going back to the port results in negative profit because there is no fish stock at the port. Negative profit
is allowed in the rolling maximization to make this happen.
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3.2.2 Formulation

The myopic problem at each decision point ¢ can be formulated as

max, Yien(pigA] Stockiyi — afcpuadi) — X jyep dijij fpuel

Tij YirAi
st Y ger(dij+dj)zgbf +Xpen Aiaf < Fro, Fuel constraints
Zv’,eN qStOCkiA;fyi < Cfnaz Hold capacity constraints
SV aig AN g = yri#k Entering and Leaving k
ye= 1 Starting from Node k
SNa = Li#k Starting from Node k
it = 1 One edge is visited
Shiyi= 2 Two nodes are visited
A = 0,k € visited nodes No harvest at previously visited nodes
yr = 0,k € visited nodes \ starting node Visited nodes in previous trip exclusion
zijyi € {0,1}
(15)
F! .. (CL..) is the available fuel capacity (hold capacity) at decision point ¢, equal to the

available fuel capacity (hold capacity) subtracted by realized fuel consumption (harvest) at

the previous decision point ¢ — 1.

Flae = Flhop—dijal; 'of — Al af
(16)
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3.3 M-site Ahead Partially Myopic Fisher

3.3.1 Assumption and Setup

Instead of site-by-site choice, the m-site ahead partially myopic fisher chooses a sequence of
up to m sites before returning to the port at every decision point. The fisher follows the
sequence to visit the chosen fishing sites. The degree of forward looking m is between 1 and
N — 1, while N denotes the total number of sites including the porﬂ At the first chosen
site, the fisher re-optimizes the trip by choosing another sequence of up to m sites before
returning to the port. The whole choice set includes no more than m + 1 sites because at
some decision point ¢, the remaining fuel constraint and/or capacity may not be sufficient
to support travelling and fishing to another m sites and returning to the port. This process
repeats until the fisher arrives at the port.

Specifically, the modeling for the m-site ahead partially myopic fisher is:

1. At the port (the first decision point, n = 1), the myopic fisher chooses the first set of
m+1< N sites (ni, nd, ---, nl,, port ) before going back to the port, subject to fuel
constraint F = F,.. and capacity constraint C),,. = Cpaz. The superscript 1 of

choice n}, and technology constraints F}, . and C},,. denotes the choice is made at the

max

first decision point. The subscript m of choice n} denotes it is the mth chosen location

in the choice set.

2. After fishing at the chosen site n} (the second decision point), the fisher makes the second

choice set of m sites before returning to the port (n%, n%, e n?n, port), subject to fuel

and hold capacity constraint C2 F2  equals to fuel constraint at

: 2
constraint F) maz* L'mazx

max

16\When m = 1, the m-site ahead fisher is the pure myopic fisher described in the previous section. When
m = N, the m-site ahead fisher is the pur dynamic fisher.
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the first decision point F}},,.. minus the fuel usage from the port (the first decision point)

to site ni (the second decision point) and fishing fuel usage at site ni. C2

ez €quals to

hold capacity constraint at the first decision point Cl _ minus the fish catch at the

max

second decision point site ni.

3. After fishing at Site n} (the ¢+ 1th decision point), the fisher chooses the ¢+ 1th sequence

of sites (n’*1, nktt ... nitHl= port) subject to constraints of fuel F:1 and hold capacity
Ccil

4. This repeats T times until the fisher chooses the port (n] = port) at Site nf 1 (the
Tth decision point). The travel path of the fisher is (port, ni, n?, ..., n},...,nT =port).
See Appendix Section [F] for the choice sets, fuel capacity constraints and hold capacity

constraints at each decision point.

3.4 Formulation

At the tth decision point, Site nﬁ_l, the partially myopic fisher chooses a sequence of sites,
travel routes and fishing efforts to maximize the profit. Decision point ¢ ranges from 1 to 7.

The m-site ahead partially myopic fisher’s problem is an undirected graph.
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max ZieN(piqA;‘YStOCkiyi - afcfuelAi) - Z(iyj)eE dijxijbfcfuel

Tij,YirAq

st Xj)epdijTibf + Xien Aiaf < Ft .. Fuel constraint

Sien qA] Stock;y; < C!,

max

Yiomy= p+1{t=1}y

N o .
ZjZanfiqj = Yptts if t >

Zi]i_llacik = 2y, wipp=xp ifi>kitk k=2, 7|N| Entering and Leaving k

n= 1 Visit Node 1

Yni-1 = Visit Node nf~*

Yies2jesTii < Yies\ry ¥is VS CN\{1}L[S| >3,k € S Subtour elimination

YSien¥i < m+1+1{t> 2 Node Visit constraint

zij i € {0,1}
(17)

4 Setting

The model and analysis in the paper are motivated and parameterized to the extent possible
by the Gulf of Mexico grouper-tilefish demersal longline fishery (Figure [2). [OFarrell et al.

(2019b)) integrated three datasets (Vessel Monitoring System (VMS) data, observer data,

171f the fisher is at the port (the first decision point), Z;VZZ

to the port. If the fisher is at another site other than port, Zj‘vzzwlj = y1 because the fisher has to return to
the port.

I81f the fisher is at another site n’ifl other than the port (the tth choice set , t > 2), this constraint denotes
that fisher departures from Site nﬁ_l.
19Edge T;1 = Xk, in the undirected graph.
20When the fisher is at the portmtl_1 =1, this constraint duplicates y; =1 and becomes redundant. When

x1; = 2y1 because the fisher leaves and returns

the fisher is at Site n'i*l other than the port, the constraint ensures that site is chosen.

2L At the port (the first decision point), the fisher chooses m sites and port so in total m+ 1 sites. However,
at Site ntl other than the port (the ¢th decision point, t > 2), the fisher chooses m + 2 sites. The extra 2 sites
include the current site and the port.
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logbook data) to capture the fine spatial behavior of the fleet. The dataset consists of more
than one million hourly GPS positions (VMS pings) from the bottom longline fishery tracking
5508 trips made by 133 vessels from 2007 to 2014. Figure [ID]is the fishing heat map plotted

using 587,204 VMS pins from 106 vessels from 2007 to 2009.

Figure 2: Bottom longlines fishing in Gulf of Mexico (]OFarrell et al.L |2019b[)

At present, the paper demonstrates the model on a 15-node problem (See Figure|3)), where
the port (Node 1) is set at Tampa, FL. The simulated vessel path in Figure [1c|forms the basis
for modeling a vessel leaving and returning to the same port.

The fishing ground modeled in the paper is based on the eastern Gulf of Mexico and is

created as a convex hull of the VMS pings classified as fishing using a supervised learning algo-

rithm trained by the observer data (OFarrell et al.), |2019b[]§ The fourteen nodes representing

fourteen fishing sites are randomly generated within the polygon. The inter-site distances are
calculated in nautical miles as the great-circle distance based on the fishing site coordinates
using Haversine formula. The fish stocks are random draws following a spatial pattern that

stock is higher for inshore siteﬂ Fishing effort is defined as fishing hour (longline set, soak

2ZVMS records east to the 87th meridian west are used in this version of the paper. The convex hull is
created using chull function in R.

Z3 At a close-to-shore site, stock (Ibs) is a random draw from the uniform distribution [20000, 30000]. Stock
at an offshore site is a random number that is uniformly distributed in [15000, 20000]. A site is considered as
close-to-shore if the point-to-polygon (site-to-shore) distance is below a threshold. The Euclidean distance of
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and retrieve time) times the number of hooks. The number of hooks is set to be 1000 to

simplify the analysiﬂ In the harvest function, we set the output elasticity of fishing effort

v = 0.7 and the catch stock elasticity 5 =1 as |Zhang and Smith| (2011)) estimate the output

elasticity of fishing effort v to be less than 1 (diminishing harvests in fishing effort) regardless
of whether the catch stock elasticity ( is restricted to 1 for all gears in the reef-fish fishery in

the Gulf of Mexicd®]
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Figure 3: Spatial distribution and fish stock of the port (Node 1) and 14 fishing sites in the
Gulf of Mexico

We consider the trips of a dynamic fisher, a myopic fisher, and a partially myopic fisher
in the presence of three sets of technology constraints: no binding technology constraints
(sufficiently large fuel capacity Fjnq: = 20000 gallons and hold capacity Cper = 200 x 100
Ibs), a binding fuel capacity constraint {fuel capacity Fi,qa = 3000 gallons, hold capacity

Cinaz = 200 x 100 lbs}, and a binding hold capacity constraint { fuel capacity F,q, = 20000

1 is used as the threshold.

24The observer data includes 8252 longline sets from 314 fishing trips by 83 vessels from 08/08/2006 to
04/24/2014.The hook number ranges from 150 to 3000 with a median of 1000 and a mean of 1019.

Z5The estimated catch effort elasticity for bottom longline is 0.3325 with standard error 0.0093 in
(2011). However, the effort in [Zhang and Smith| (2011) is defined as number of crew times trip days
while the effort in this paper is defined as number of hooks times fishing hour (longline set, soak and retrieve
time).

24



gallons, hold capacity Ciee = 30 x 100 lbs}m The problems are formulated as mixed-integer
programming (MIP) problems and solved by the Gurobi solver.

The implicit temporal dimension can be constructed by the fishing and travelling times.
Fishing effort reflects the fishing hours (longline set, soak, and retrieve time) spent at a fishing
site. Travelling time can be calculated from the travel distance of the chosen edge with a given
travel speed. Suppose the traveling speed is 5 knots (nautical mile per hour), traveling fuel

consumption rate is 5 gallon per hour while fishing fuel consumption rate is 10 gallon per

hou@

5 Results

Generally, we expect that the technology constraints affect the short-run decisions over fishing
location, path, and fishing effort by imposing a trip level shadow price. Before reporting the
simulation results that demonstrate those findings, we can analytically show the role that
technology constraints play in determining the effort allocation at each site. Specifically,
the trip level shadow price that holds across fishing sites either affects the marginal revenue
(p — Ahota) or the marginal cost (cfuer + Afyer) depending on the constraint that is binding.

Equation [19] shows the optimal effort allocation at site i.

26The logbook data includes hold capacity and fuel capacity for 145 vessels. The hold capacity in pounds
ranges from 1000 to 200,000 with mean of 15787 and median 12000. The fuel capacity in gallons ranges from
200 to 6000 with mean of 1319 and median of 1000.

2"Fuel consumption rate for fishing is assumed to be twice as large as steaming. Accurate information on
fuel consumption rates for steaming and fishing were not available yet. We are exploring ways to improve this
parameterization by developing methods more appropriate for longline fishing in the Gulf of Mexico.
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Cf% = pgStockiyiv AT — afepue — A fuetaf — AnoragStockyiy A7
= (p— Motd)gStockiyiv AT — (Cuet + Auct)af (18)
=0

= A* = (p - Ahold)qStOCkiyﬂ]ﬁ
‘ (Cfuel =+ /\fuel)af

Regardless of the binding constraint, the shadow price reduces the effort allocation at each
site relative to the case where the constraints are not binding. The latter is representative
of the myopic fisher at sites that are not their last fishing sites. Having said that, eventually
the constraints will bind even in the myopic case and at the last decision point where they
bind, there is a revealed shadow price. For example, if the myopic fisher is making their 5th
decision of where to go on a trip and how much effort to exert and they calculate that they
can’t go to another site as they will run out fuel, then that decision’s optimal calculus includes
the shadow price attached to the binding fuel constraint. But for all decisions before their
5th, the constraint did not bind and therefore their decision calculus was independent of the
shadow price.

The presence of the shadow price impacts directly the effort exerted in each patch which
also determines the fuel used for fishing in each patch and the catch. As such, it influences

the path taken on the trip (and the fuel expended steaming to and from the fishing sites).

5.1 Dynamic fisher vs myopic fisher

Figure [4 shows the location choice,travel path and fishing effort of the dynamic fisher and the
myopic fisher under three sets of technology constraints. Table 3| highlights the differences in

key variables across the cases including the trip profit, fuel use, harvest, shadow price, and
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endogenous trip length.

Variable Unconstrained Fuel Hold

Fraz = 20,000,Crnae =200  Fruap = 3,000, Crrge = 200 Fraz = 20,000, Chpae = 30
Fisher Type Dynamic Myopic Dynamic Myopic Dynamic Myopic
Profit 0.947 4ynamic 0.447qynamic 0.617dynamic
Fuel Usage 17518.03 17916.41 3000 3000 2138.7 3064
Harvest 160.88 160.88 40.74 29.16 30 30
Shadow priCO - )\fuel =1.6031 /\hold =142.3355
Travel% 6.9% 10.8% 34.5% 10% 36.9% 9.8%
Fishing% 93.1% 89.2% 65.5% 90% 63.1% 90.2%
Trip Length (day) 75 79 15 13 11 13

1. Travel% denotes percentage of travel time of the total trip length. Same for Fishing%.

Table 3: Fuel and Hold Usage, Binding Constraints, Shadow Price, Travel Route and Time

5.1.1 Nonbinding constraints

With sufficient fuel and hold capacity@ the dynamic fisher and myopic fisher visit and harvest

at all fishing sites and exert fishing effort at each site until the marginal profit equals 0

( 6e?fgrti =0). While the two are identical in terms of sites visited, harvest, and effort exerted,
the trip profits differ because the dynamic fisher optimizes their route while the myopic does

notlﬂ Figure and show the route planning by the dynamic fisher while the myopic

fisher only considers the next best choice ( mainly following the order of fish stock).

5.1.2 Binding fuel constraint

While the unconstrained case is valuable for highlighting the role and value of route planning,
vessels are constrained in their fuel and hold capacity, especially when considering the large
choice set of fishing sites. To investigate the role of these technological constraints, we reduce

the fuel capacity to ensure that it is binding. Specifically, when we set the fuel constraint

28We set fuel capacity Fmaz = 20,000 gallons and hold capacity Cmaz = 200 x 100 lbs so that neither
constraints bind (Table .

29The bidirectional route for the dynamic fisher:1-5-8-4-11-12-9-15-14-6-10-7-2-13-1. The directional route
for the myopic fisher:1-13-5-7-10-8-9-12-4-11-15-6-2-14-3-1.
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to 3,000 gallons with the same hold capacity constraint of 200 x 100 lbs, we find that both
fishers face a binding fuel constraint though it only appears in the last decision of the myopic
fishers trip calculuﬂ

In Figure [Ad] we see that the dynamic fisher goes to the same location choices, as the
unconstrained case, but reduces the effort at every visited site. In the presence of the con-
straint and with diminishing marginal harvest to effort, we find that it is optimal to spread
fishing effort across fishing sites instead of concentrating effort on one or two sites with the
largest fish stock. The effort is reallocated such that marginal profit of effort equals to the

the shadow cost of fuel times the fuel consumption per unit of effort ( aeggrti = afAyel)-

The myopic fisher on the other hand concentrates effort at Site 13 with the highest fish
stock (Figure . When the fisher makes the choice to visit Site 13, the fuel constraint is
not binding, and as such the fishing effort at Site 13 is the unconstrained optimal effort.
The fuel constraint, however, is binding and hence reduces the effort spent at Site 5, the
last fishing site before the port. Since fishing and travelling consume fuel, we find that the
relative shadow price of fuel for the myopic at site 5 is greater than the optimal shadow price
( )\}nu‘lfe‘f;c =2.1230 > )\?ZZ?WC =1.6031). This results in the effort at Site 5 being smaller than
the dynamic optimal level. The inefficient use of fueP]] and concentrated levels of effort across
fishing sites, limits the number of visited sites and leads to a much lower profit for the myopic

fisher (ﬂ'myopjc ~ 0-447rdynamic)-

30The bidirectional route for the dynamic fisher:1-5-8-4-11-12-9-15-14-6-10-7-2-13-1. The directional route
for the myopic fisher:1-13-5-1.

31Because the myopic fisher visits the fishing sites following the order of fish stock, the first few visited fishing
sites have the largest fish stock and therefore requires a lot of fishing effort/fuel to drive down the marginal
profit of effort to zero.
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5.1.3 Binding hold constraint

We now consider the case of reducing the hold capacity from 200 x 100 lbs to 30 x 100 lbs
while using the unconstrained amount of fuel. Both fishers have a binding hold constraint but
just as in the case with the binding fuel constraint, the dynamic fisher considers the constraint
when deciding the trip and myopic only in their final decision poin@

In Figure [dg) we see that the dynamic fisher no longer visits the relatively distant Sites
3, 4, 11 and 12 (a smaller circle), and reduces the effort at every visited site. The effort is
reallocated such that marginal profit of harvest equals to the shadow cost of hold capacity
(ah%"fcsti = Ahold). On the contrary, the myopic fisher concentrates effort at Site 13 with the
highest fish stock (Figure . The hold capacity constraint for the myopic fisher is binding
at Site 5, the last decision point before returning to the port ()\ZLO%?C = 154.47 > )\ngd‘lmic =
142.33). Given the relative size of the shadow prices, we find that the effort at Site 5 is smaller
in the myopic than the dynamic optimal level. The myopic fisher again has a much lower trip
level profit (Tmyopic = 0.61Tdynamic), even though both fishers have the same harvest. We also
find that the endogenous trip length is longer and that most of their fuel is spent fishing (they
fish longer and harder at each patch before moving on as they are fishing until the marginal

profit goes to zero).

5.2 M-site ahead partially myopic fisher

From the previous results, the dynamic fisher and the myopic (1-site ahead) fisher behave
differently in route planning and incorporating shadow price of the technology constraints

into fishing effort. In the unconstrained case, the myopic fisher makes less profit because of

32The bidirectional route for the dynamic fisher:1-5-8-9-15-14-6-10-7-2-13-1. The directional route for the
myopic fisher:1-13-5-1.
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no route planning. In the fuel constrained case and hold constrained case, no route planning
and ignoring the technology constraint before the last decision point lead to the smaller profit
for the myopic fisher. This section decomposes the loss from route planing and the loss from
ignoring the technology constraint shadow price in the fuel constrained case (F,q, = 3000
gallons, Cpqe = 200 x 100 1bs.).

The m-site ahead fisher is more forward looking with larger m, therefore the degree of route
planning increases with m. To separate the impact of route planning from that of technology
constraint shadow price, we consider an m-site ahead fisher who knows and incorporates the
shadow price of the binding technology constraint. From Equation the shadow price of
fuel acts as extra fuel cost that affects the fishing effort at each fishing site when the fuel
constraint is binding. Then the m-site ahead partially myopic fisher knowing A, faces the
cost of cyyel + Afyer in the decision-making process. Figure 5| shows the location choice, travel
path and fishing effort of the m-site ahead fisher and the m-site ahead fisher knowing Azy.;.
Table [ summarizes the deviation of profit from the dynamic optimal profit, total catch, travel
and fishing time.

For the myopic fisher who makes period-by-period/site-by-site decision, Tpmyopic = 0.447 gynamic-
With the shadow price of fuel embedded in the decision making, the profit almost doubled (
Tmyopic\ puer = 0.867dynamic). The profit increases largely because the myopic fisher chooses
the dynamic optimal level of effort, knowing the shadow price of fuel. The myopic fisher, how-
ever, visits fewer sites than the dynamic fisher because of the lack of route planning (Figure
. When m increases from 1 to 2, 3 and 6, the profit increases from better route planning
that leads to less fuel wasted allowing visiting and fishing at more sites. However, the fuel is

not used up with constrained route planning. We find that the magnitude of profit increase
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from route planning is lower compared to the magnitude of profit increase from embedding
the shadow price of fuel. That is, the efficiency loss from overfishing at each site is much
greater than the efficiency loss from poor route planning. Whether this holds in general is
unclear and is something we plan to explore with further sensitivity analysis. For example,
we are currently assuming that the travel fuel consumption rate is half of the fishing fuel
consumption rate and as such, improving travel efficiency may not increase much profit.

In general, profit increases with increasing m due to both better route planning and
accounting for the shadow price of the technology constraints. That is, greater forward-looking
behavior results in spreading effort across fishing sites by considering the binding technology
constraints. Although the shadow price of fuel is not equal across all visited fishing sites,
the difference among the shadow price of fuel decreases with mlﬂ From the third column of
graphs in Figure [5, we can see that fishing efforts (red column by the m-site ahead partially
myopic fisher) are more concentrated at early visited sites with smaller m (m = 1,2 Figure
and . Fishing efforts between the dynamic and partially myopic fisher are more equal

across the fishing sites with larger m (m = 3,6 Figure |5i and .

33Here are the revealed shadow price for partially myopic fishers.
2-site ahead: Apyer,5 = 0.3607, Apyer g = 0.7460, Afyer,7 = 1.3513, Apyer,; = 1.6359,i =2,13.
3-site ahead: Afyer,8 =0.5804, Afyer5 =0.8955, Apyer 10 = 1.2654, Apyer; = 1.4262,1=7,2,13.
6-site ahead: Apyer5 =1.0821, Apyer 8 =1.1579, Afyer,15 = 1.2996, Apyers = 1.3735,i =14,6,10,7,2,13.
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Figure 5: M-site ahead partially myopic fisher, binding fuel, Fi,q. = 3000, Cier = 200
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1-site ahead 2-site ahead 3-site ahead 6-site ahead

Variable Dynamic

Myopic  w/Afuer  Partially Myopic  w/Apuer  Partially Myopic  w/Afue Partially Myopic  w/Afpyer
Profit! 6221.2 0.44 0.86 0.78 0.87 0.88 0.87 0.95 0.97
Fuel Usage 3000 3000 2994.5 3000 2771.43 3000 2887.08 3000 2914.54
Harvest 40.74 29.16 37.75 36.08 36.61 38.32 37.30 39.73 39.6
Afuel 1.6031 1.6031 1.6031 1.6031 1.6031
Travel %> 34.5% 10% 41.9% 17.2% 37.4% 21.2% 39.6% 26.3% 34.5%
Fishing% 65.5% 90% 58.1% 82.8% 62.6% 78.8% 60.4% 73.7% 65.5%
Trip Length (day) 15 13 16 13.7 14.2 14 15 14.4 14.7
# Sites 14 2 12 5 11 6 12 9 13

1. Only the profit of the dynamic fisher is listed in the table. For the myopic and partially myopic fishers, the percentage of the dynamic profit #
dynamic
is listed.
2. Travel% denotes percentage of travel time of the total trip length. Same for Fishing%.

Table 4: Fuel and hold usage by m-site ahead partially myopic fisher with binding fuel,
Frnaz = 3000, Cpar = 200

6 Conclusions

Fishing production function is uniquely shaped by space. This paper constructs a spatial
dynamic model of an individual fisher’s decision on location choices, effort allocation, and a
multi-day trip path with endogenous trip length. This structural behavioral model of ex-ante
short run production decision-making is useful to fishery management and lays the foundation
of a comprehensive model of the fishing production process. After estimation or calibration
using the empirical data, the model can be used to predict fishers’ responses to policies like
area closure and access economic impacts for policy design or evaluation.

The individual fisher maximizes profit by choosing locations with high fish stock and low
travel distance. Technology constraints such as fuel and hold capacity impose shadow prices
affecting, from the outset of the trip, the interconnected decision on location choice, effort
allocation, and travel path.

For this analysis we generate a random set of 14 fishing sites, each with a given fish stock
following the spatial pattern that nearshore sites are higher in stock. Changes in the location

of the sites or the spatial pattern of fish stock won’t change the qualitative results. We may
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have another set of between-site distances with another draw of fishing sites or a different set
of stock. Then the resulting chosen fishing sites, the fishing effort at each site, and the travel
path for a specific type of fisher may change. However, the fisher has consistent behavior.
The dynamic fisher always allocates effort at every visited site so that the marginal profit of
harvest is equal to the shadow price of fuel or hold. The myopic fisher or the partially myopic
tends to overfish at the early visited sites.

An implication of our findings is that in the traditional random utility model of fishing
location (Equation (1)) the coefficient of expected rewards is overestimated if the technology
constraints are omitted. Route planning is also missing in the static RUM models. Considering
one location choice at a time, the myopic fisher will not know all the chosen locations ahead
and hence fail to find the shortest path. This will inversely restrict the fishing effort at each
fishing site and the number of fishing sites that the fisher can visit. We conclude that the
static RUM models are structurally misspecified but leave for future research an investigation
into the empirical ramification of the incorrect specification.

The current version of the paper accounts only for the deterministic case in which the fisher
has perfect information on the fish stock at each fishing site. Under a stochastic setting, the
individual fisher cannot observe the fish stock and has beliefs on the mean and variance of
the stock at each site. Under uncertainty, the vessel hold capacity constraint also becomes a
probabilistic constraint. Decision making with uncertainty also requires cognitive operations,
including information acquisition and information processing. In future work, we plan to
incorporate these features of fishery production into the structural model of trip level decision-

making.
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A Fishing Production Process
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Figure 6: The Fishing Production Process (Reimer, 2012])

B Subtours in the Traveling Salesman Problem
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Figure 7: Example of subtours from Traveling Salesman Problem: Problem-Based [MathWorks

(2021)

C Optimal Unconstrained and Constrained Fishing Effort

The Lagrange function of the dynamic fisher optimization problem (Problem [3)) is

L(zij,yi, Ais\) = Yien (pgA] Stockiy; — afcpuerAi) — X i jyep dijTijbfCpuel
—Afuel (X (i g)ep dijTiibf + X en Aiaf — Frmaa)

—Ahotd(Xien A7 Stockiy; — Crnaz)

The first order condition of fishing effort at each site is

oA = PgStock;yiy Al — afcuer — Apucraf — AnoraqStockiy;y A7

= (p— Mota)gStockiyiv AT — (Cuet + N uet)af

= Af = ((P*)\hold)qstockiyi'y)ﬁ

(Cfuel+>‘fuel)af

(20)

(21)

1. If neither of the fuel and hold constraint binds, A ue; = 0, Apotg = 0. A = (paStockiyiy ) 745

Cfuelaf

2. If the fuel constraint binds while hold constraint doesn’t. Afyer > 0, Apoiq = 0. From the
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FOC, we can derive A7 (Afyer), the optimal fishing effort as a function of Apye.

¥ _  ((P=Anaa)gStockiyivy 115
AZ - ( (Cfuel+>\fuel)af )

(22)
— pgStockiyiy  \145
- ((Cfuel+)‘fuel)af) o

Use the binding fuel constraint, we can solve At,¢ and therefore A7.

S (i.pyer dijtibf + X en Aiaf = Fras
ST
= D (ij)eE dz‘j:L“ijbf+Z(,L-)EN(%)1_7 af = Foos
= Afuel

= A =( pgStockiy;y
(2

1
- .
ES T f) 7 using derived Ay

3. If the fuel constraint doesn’t bind while the hold constraint binds, Afyer = 0, Aporg > 0.
Similarly, we can derive A} (Apoiq) from the FOC, the optimal fishing effort as a function

Of >\hold~

Af = ((p—Ahold)qStockiyi—y)ﬁ

t (Cfuel+)‘fuel)af

(24)

= (P—Anota)gStocksyiy ) =
Cfuelaf

Using the binding hold constraint, we can solve Apoq and therefore A7.

Y ieN qA;YStockiyi = Chaz

—)\ Kiyiy\ =
= ZiEN q( (e h%l}izgls@:})c . ’Y) 1=y StOCkiyi = Cmaz (25)

= Mhold

o .
)T=7 using derived Apoiq

* _ ((P—Anola)gStock;y;y
= Al o ( Cfuelaf
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D Derivation of Catchability Coefficient ¢

The catchability coefficient ¢ is chosen so that the harvest from the unconstrained optimal

effort at each site is interior g(A})7Stock;y; < Stock;. With no constraint on fuel and hold,

Afuel = Ahotd = 0,

w _  ((p=Anota)gStockiyiy \ 1=
AZ ( (Cfuel+)‘fuel)af ) ! (26)
Stockiyiy \ s
= (s
The optimal harvest at each site should not exceed the available stock.
q(AF)7Stock;y; < Stock;
q(A7) 7y <1
_( PgStockyiv\ T2
4y (B epuaar )T <1 (27)

1 1 o
== ,,1-7 (pStockiy\ 1725
q'=7y; (Cfuelaf) v <1
1 711,y pStock;y \ -t
T~ JUSLISIS S I gy
q er < ( Cfuelaf )

. Cfuelaf
Wi < (pStocki'y )’y

Given parameter values of Stock;, a,p,cfyer, ¢ is chosen so that works for all site, qy; =

Cfuelaf )’y]
pStock;y

E Scaling Fishing effort

Fishing effort is defined as hook number X fishing hour. Replace effort A; with A;nk as
1 = 1000 is the number of hooks, k is the scaling parameter, then A; is just fishing hour.

Fishing fuel consumption is afnxA; while the traveling fuel consumption is bfd;;x;; is .
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Choose a = 0.001 so that a xn=1. A; is the fishing hour, then f x k is the fuel consumption

per fishing hour. d;;x;; is the traveling distance while b is so bd;jxi; is the travel hour.

_1
speed’

f is the fuel consumption per traveling hour. k can be interpreted as scaling parameter for

fuel consumption per fishing hour.
e k=2, fishing fuel consumption is twice of traveling fuel consumption per hour.
e k=1, fishing fuel consumption is the same as traveling fuel consumption per hour.
e k= 0.5, fishing fuel consumption is half of traveling fuel consumption per hour.
So the Lagrange can be rewritten as
L(xij,yi, Ais ) = Yien (0gA] 1KY Stockiyi — afepuaAink) =3 i jyep dijTijbf Cue

—Atuet (X (i jye 5 dijTibf + X yen Ainkaf — Fag) (28)

_)\hold(Zz‘eN qunFY“FyStOCkiyi - Cmam)

The first order condition of fishing effort at each site is

aa,i = pqStOCkiyivAfln“*M —afnkcryel — A fuetafnk — )\holqutockiywAZ*lmm
= (p - Ahold)qStOCkiyi’VAzilnv"{’y - (Cfuel + )‘fuel)afn'% (29)
x _ ((p=Anota)qStockiyiyn K7 \ 2=
= AZ o ( (Cfuel“r)\fuel)afn/‘? )1 7

The moment condition can be rewritten as

—A ue -1
(ﬁ)QvtS‘UOCkwtywt’YEffOl“t?m kY =afnk (30)
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F Timing of m-site ahead partially myopic fisher

Decision point ¢ Current Site Choice set with order Fuel Constraint Capacity Constraint

t=1 nd =1, port nind,--- nl port Fl..= Fra CL v =Crax

t=2 n% Il%., n%v t 7”371,’ port Fr?mx = F’!}Mll - dln% bf - An} af Ca?naz = C}nam - qStOCkn% AZL}
t=3 n% n‘lg'/ ngv o 7”?71’ port ngam = Frgmz - dninf bf — Anfaf nga'c = C?na:c - qStOCkan:g

t+1  t+1

t+1 nﬁ n1Jr 7n2+ [ rni:[l = port Frth;]x = anam - d71,57171,§ bf - Anﬁ af Cfrjra]'c = Cfna,:c - qStOCkni A:,tl
_ T-1 T _ T _ pT-1 T _T-1 /
t=T ny ni = port Frae = Fraz — d,r-2,7-10f = A r-1af - Chipp = Cpgg — qStock, 7 A:{f“

Table 5: Timing of m-site ahead partially myopic fisher
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